Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find ∫(x3+2x2+x+1) dx\int (x^3 + 2x^2 + x + 1)\,dx∫(x3+2x2+x+1)dx.
Find the indefinite integral of 5x3+8x2+9x+35x^3 + 8x^2 + 9x + 35x3+8x2+9x+3.
Evaluate the indefinite integral of 3x4−x2+73x^4 - x^2 + 73x4−x2+7.
Evaluate the indefinite integral ∫(10x2−5x+3) dx\int (10x^2 - 5x + 3)\,dx∫(10x2−5x+3)dx.
Find the particular integral of dydx=3x2+8\tfrac{dy}{dx} = 3x^2 + 8dxdy=3x2+8 satisfying y(1)=4y(1)=4y(1)=4.
Compute ∫(6x5−4x+2) dx\displaystyle\int (6x^5 - 4x + 2)\,dx∫(6x5−4x+2)dx.
Determine the function yyy if dydx=4x3−x2+6\tfrac{dy}{dx} = 4x^3 - x^2 + 6dxdy=4x3−x2+6 and y(0)=5y(0)=5y(0)=5.
Compute the indefinite integral ∫(x7−3x5+2x2) dx\displaystyle\int (x^7 - 3x^5 + 2x^2)\,dx∫(x7−3x5+2x2)dx.
If dydx=2x4−3x2+1\tfrac{dy}{dx} = 2x^4 - 3x^2 + 1dxdy=2x4−3x2+1 and y(1)=3y(1)=3y(1)=3, determine y(x)y(x)y(x).
Find the particular solution of dydx=8x4+2x3+11x+3\displaystyle\frac{dy}{dx} = 8x^4 + 2x^3 + 11x + 3dxdy=8x4+2x3+11x+3 given that y(1)=9y(1)=9y(1)=9.
Given dy/dx=7x3−2x+5dy/dx = 7x^3 - 2x + 5dy/dx=7x3−2x+5 and y(2)=0y(2)=0y(2)=0, find y(x)y(x)y(x).
Find the particular solution of dydx=5x5+4x3−6x\tfrac{dy}{dx} = 5x^5 + 4x^3 - 6xdxdy=5x5+4x3−6x with the condition y(0)=10y(0)=10y(0)=10.
Previous
No previous topic
Next
Question Type 2: Integrating polynomials with boundary conditions to solve for C