Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Express 4eiπ/44e^{i\pi/4}4eiπ/4 in polar form r(cosθ+isinθ)r(\cos\theta+i\sin\theta)r(cosθ+isinθ).
Convert 5e−iπ/35e^{-i\pi/3}5e−iπ/3 to polar form r(cosθ+isinθ)r(\cos\theta+i\sin\theta)r(cosθ+isinθ).
Write 3ei5π/63e^{i5\pi/6}3ei5π/6 in the form r(cosθ+isinθ)r(\cos\theta+i\sin\theta)r(cosθ+isinθ).
Express 2ei7π/42e^{i7\pi/4}2ei7π/4 in polar form with the principal argument in the interval (−π,π](-\pi,\pi](−π,π].
Convert 6ei10π/36e^{i10\pi/3}6ei10π/3 to polar form by first reducing the argument to [0,2π)[0,2\pi)[0,2π).
Write 7e−i5π/27e^{-i5\pi/2}7e−i5π/2 in polar form with a principal argument in (−π,π](-\pi,\pi](−π,π].
Express 8ei(−3π/4)8e^{i(-3\pi/4)}8ei(−3π/4) in polar form and then simplify the argument to an equivalent angle between 000 and 2π2\pi2π.
Convert 9ei13π/69e^{i13\pi/6}9ei13π/6 to r(cosθ+isinθ)r(\cos\theta+i\sin\theta)r(cosθ+isinθ) form with the argument in (−π,π](-\pi,\pi](−π,π].
Write 10ei15π/410e^{i15\pi/4}10ei15π/4 in polar form by reducing its argument to the range (−π,π](-\pi,\pi](−π,π].
Express 12e−i11π/312e^{-i11\pi/3}12e−i11π/3 in polar form with the argument in [0,2π)[0,2\pi)[0,2π).
Convert 5ei(−13π/4)5e^{i(-13\pi/4)}5ei(−13π/4) to r(cosθ+isinθ)r(\cos\theta+i\sin\theta)r(cosθ+isinθ) form, giving the principal argument in (−π,π](-\pi,\pi](−π,π].
Write 14ei17π/514e^{i17\pi/5}14ei17π/5 in trigonometric form, reducing the argument to the interval [0,2π)[0,2\pi)[0,2π).
Previous
Question Type 1: Converting complex numbers from Cartesian form to Euler and Polar forms
Next
Question Type 3: Converting complex numbers from Polar to Cartesian form