Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Express z=−3z=-3z=−3 in polar and Euler forms.
Express z=−5iz=-5iz=−5i in r(costheta+isintheta)r(\\cos\\theta+i\\sin\\theta)r(costheta+isintheta) and Euler form.
Convert the purely imaginary z=5iz=5iz=5i into polar and Euler forms.
Convert z=3z=3z=3 into polar and Euler forms.
Express the complex number z=4+3iz = 4 + 3iz=4+3i in (a) polar form r(costheta+isintheta)r(\\cos\\theta + i\\sin\\theta)r(costheta+isintheta) and (b) Euler form reithetare^{i\\theta}reitheta, giving theta\\thetatheta in radians.
Convert z=1+sqrt3iz=1+\\sqrt{3}iz=1+sqrt3i into polar form ranglethetar\\angle\\thetarangletheta (in degrees) and Euler form.
Express z=−1+sqrt3iz=-1+\\sqrt{3}iz=−1+sqrt3i in polar form r(costheta+isintheta)r(\\cos\\theta+i\\sin\\theta)r(costheta+isintheta) and Euler form, with theta\\thetatheta in radians.
Convert z=−1−sqrt3iz=-1-\\sqrt{3}iz=−1−sqrt3i to polar form ranglethetar\\angle\\thetarangletheta (degrees) and Euler form.
Find the polar and Euler forms of z=sqrt3−iz=\\sqrt{3}-iz=sqrt3−i, with angle in radians.
Express z=−4−4iz=-4-4iz=−4−4i in polar form and Euler form, giving the argument in radians.
Convert z=2−2sqrt3iz=2-2\\sqrt{3}iz=2−2sqrt3i into polar form r(costheta+isintheta)r(\\cos\\theta+i\\sin\\theta)r(costheta+isintheta) and Euler form (radians).
Express z=−2+2sqrt3iz=-2+2\\sqrt{3}iz=−2+2sqrt3i in polar and Euler forms, with argument in radians.
Previous
No previous topic
Next
Question Type 2: Converting complex numbers from Euler to Polar form