Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
For the line y=mx+5y = mx + 5y=mx+5, if it passes through (2,11)(2,11)(2,11), find mmm.
For the model y=acos(3x)+9y = a\cos(3x) + 9y=acos(3x)+9, when x=0x = 0x=0 and y=11y = 11y=11, find the value of aaa.
Find mmm and bbb for the line y=mx+by = mx + by=mx+b passing through (1,3)(1,3)(1,3) and (4,9)(4,9)(4,9).
For y=10ekxy = 10e^{kx}y=10ekx, if y=20y=20y=20 when x=1x = 1x=1, determine kkk.
Given y=2x2+bx+3y=2x^2+bx+3y=2x2+bx+3 passes through (2,15)(2,15)(2,15), find bbb.
The model y=3asin(3x)+dy = 3a\sin(3x) + dy=3asin(3x)+d passes through (0,7)(0,7)(0,7) and (π6,3)(\tfrac{\pi}{6},3)(6π,3). Determine aaa and ddd.
For p(x)=Asin(Bx)+2p(x) = A\sin(Bx) + 2p(x)=Asin(Bx)+2, given p(π2)=5p(\tfrac{\pi}{2}) = 5p(2π)=5 and p(π)=2p(\pi) = 2p(π)=2, determine AAA and BBB.
In the sinusoidal model p(t)=Pcos(ωt)+3p(t) = P\cos(\omega t) + 3p(t)=Pcos(ωt)+3, given p(0)=8p(0)=8p(0)=8 and p(π2)=3p(\tfrac{\pi}{2})=3p(2π)=3, find PPP and ω\omegaω.
For y=asin(4x)+1y = a\sin(4x) + 1y=asin(4x)+1, if y=5y = 5y=5 when x=π2x = \tfrac{\pi}{2}x=2π, determine aaa.
In the exponential model y=Aekxy = A e^{kx}y=Aekx, suppose y(0)=5y(0)=5y(0)=5 and y(2)=20y(2)=20y(2)=20. Find AAA and kkk.
Find a,b,ca,b,ca,b,c if the quadratic y=ax2+bx+cy = ax^2 + bx + cy=ax2+bx+c passes through (1,4)(1,4)(1,4), (2,9)(2,9)(2,9) and (3,16)(3,16)(3,16).
Given y=acos(2x)−5y = a\cos(2x) - 5y=acos(2x)−5, and the point (x,y)=(π4,3)(x,y)=(\tfrac{\pi}{4},3)(x,y)=(4π,3) lies on the curve, find aaa.
Previous
Question Type 4: Finding parameters of exponential models using the initial condition
Next
No next topic