Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Evaluate log10(1000)\log_{10}(1000)log10(1000).
Simplify log7(74)\log_7(7^4)log7(74).
Evaluate log2(8)\log_2(8)log2(8).
Evaluate log3(27)\log_3(27)log3(27).
Evaluate log2(18)\log_{2}(\tfrac{1}{8})log2(81).
Evaluate log5(125)\log_5\bigl(\tfrac{1}{25}\bigr)log5(251).
Solve for xxx: log10(x)=−1\log_{10}(x)=-1log10(x)=−1.
Solve for xxx: log2(x)=5\log_2(x)=5log2(x)=5.
Solve for xxx: log7(x)=2\log_7(x)=2log7(x)=2.
Solve for xxx: log4(x)=32\log_4(x)=\tfrac{3}{2}log4(x)=23.
Evaluate log4(64)\log_4(64)log4(64).
Solve for xxx: log(x)+log(2)=3\log(x)+\log(2)=3log(x)+log(2)=3, where log\loglog is base 10.
Solve for xxx: log2(16)+log2(x)=6\log_{2}(16)+\log_{2}(x)=6log2(16)+log2(x)=6.
Solve for xxx: log3(9x)=3\log_{3}(9x)=3log3(9x)=3.
Solve for xxx: log3(x)−log3(2)=2\log_3(x)-\log_3(2)=2log3(x)−log3(2)=2.
Previous
Question Type 3: Rewriting expressions to apply exponent rules
Next
Question Type 5: Finding values of the base or the input of a log given one and an exponent