Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Compute A9A^9A9 for the diagonal matrix A=(7003)A=\begin{pmatrix}7 & 0 \\ 0 & 3\end{pmatrix}A=(7003).
Let P=(111−1),D=diag(3,1),A=PDP−1.P=\begin{pmatrix}1 & 1 \\ 1 & -1\end{pmatrix},\quad D=\mathrm{diag}(3,1),\quad A=PDP^{-1}.P=(111−1),D=diag(3,1),A=PDP−1. Compute A8A^8A8.
Compute A6A^6A6 for A=(5225)A=\begin{pmatrix}5 & 2 \\ 2 & 5\end{pmatrix}A=(5225) by diagonalization.
Compute A5A^5A5 for A=(4321)A = \begin{pmatrix}4 & 3 \\ 2 & 1\end{pmatrix}A=(4231) using diagonalization.
Compute A4A^4A4 for A=(−122−1)A=\begin{pmatrix}-1 & 2 \\ 2 & -1\end{pmatrix}A=(−122−1) by diagonalization.
Find A4A^4A4 for A=(3421)A=\begin{pmatrix}3 & 4 \\ 2 & 1\end{pmatrix}A=(3241) using diagonalization.
Compute A7A^7A7 for A=(1331)A=\begin{pmatrix}1 & 3 \\ 3 & 1\end{pmatrix}A=(1331) by diagonalization.
Find a general formula for AnA^nAn where A=(2112)A=\begin{pmatrix}2 & 1 \\ 1 & 2\end{pmatrix}A=(2112) by diagonalizing AAA.
Compute A5A^5A5 for A=(6−213)A=\begin{pmatrix}6 & -2 \\ 1 & 3\end{pmatrix}A=(61−23) by diagonalizing AAA.
Find A10A^{10}A10 for A=(4123)A=\begin{pmatrix}4 & 1 \\ 2 & 3\end{pmatrix}A=(4213) using diagonalization.
Find a general expression for AnA^nAn where A=(4312)A=\begin{pmatrix}4 & 3 \\ 1 & 2\end{pmatrix}A=(4132) by diagonalizing AAA.
For the symmetric matrix A=(abba),A=\begin{pmatrix}a & b \\ b & a\end{pmatrix},A=(abba), derive a formula for AnA^nAn in terms of a,b,na,b,na,b,n.
Previous
Question Type 3: Finding the diagonalization matrix of a 2x2 matrix using its eigenvalues and eigenvectors
Next
No next topic