Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Determine the domain of p(x)=ln(5−x+4)p(x)=\ln\bigl(5-\sqrt{x+4}\bigr)p(x)=ln(5−x+4).
Determine the domain of t(x)=ln(x−3−1)t(x)=\ln\Bigl(\sqrt{x-3}-1\Bigr)t(x)=ln(x−3−1).
Determine the domain of g(x)=1ln(x−1)g(x)=\frac{1}{\sqrt{\ln(x-1)}}g(x)=ln(x−1)1.
Find the domain of s(x)=11−e−xs(x)=\frac{1}{\sqrt{1-e^{-x}}}s(x)=1−e−x1.
Find the domain of u(x)=lnxx−1u(x)=\sqrt{\frac{\ln x}{x-1}}u(x)=x−1lnx.
Find the domain of the function f(x)=ln(x2+2x+1)f(x)=\sqrt{\ln(x^2+2x+1)}f(x)=ln(x2+2x+1).
Find the domain of h(x)=x−3x−1h(x)=\sqrt{\frac{x-3}{x-1}}h(x)=x−1x−3.
Find the domain of q(x)=x2−4ln(x−2)q(x)=\frac{\sqrt{x^2-4}}{\ln(x-2)}q(x)=ln(x−2)x2−4.
Determine the domain of y(x)=ln(1−1x−2)y(x)=\ln\Bigl(1-\frac{1}{x-2}\Bigr)y(x)=ln(1−x−21).
Determine the domain of r(x)=ln(2x−5)+1r(x)=\sqrt{\ln\bigl(2x-5\bigr)+1}r(x)=ln(2x−5)+1.
Determine the domain of v(x)=ln(ln(x2−1))v(x)=\ln\bigl(\ln(x^2-1)\bigr)v(x)=ln(ln(x2−1)).
Find the domain of w(x)=x+2ln(x+3)w(x)=\sqrt{\frac{x+2}{\ln(x+3)}}w(x)=ln(x+3)x+2.
Previous
Question Type 3: Finding the domain of simple functions
Next
Question Type 5: Finding the range of different simple functions