Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the determinant of the matrix A=(3527)A = \begin{pmatrix}3 & 5 \\ 2 & 7\end{pmatrix}A=(3257).
Find the determinant of B=(−463−2)B = \begin{pmatrix}-4 & 6 \\ 3 & -2\end{pmatrix}B=(−436−2).
Compute the determinant of D=(abcd)D = \begin{pmatrix}a & b \\ c & d\end{pmatrix}D=(acbd) in terms of a,b,c,da,b,c,da,b,c,d.
Find the determinant of C=(1.52.3−0.74.1)C = \begin{pmatrix}1.5 & 2.3 \\ -0.7 & 4.1\end{pmatrix}C=(1.5−0.72.34.1).
Determine all values of kkk for which F=(k+142k−3)F=\begin{pmatrix}k+1 & 4 \\ 2 & k-3\end{pmatrix}F=(k+124k−3) is invertible.
For the matrix E=(k25k−1)E=\begin{pmatrix}k & 2 \\ 5 & k-1\end{pmatrix}E=(k52k−1), express det(E)\det(E)det(E) in terms of kkk.
The vectors u=(2,3)\mathbf u=(2,3)u=(2,3) and v=(1,5)\mathbf v=(1,5)v=(1,5) form a parallelogram. Compute its area.
Given that det(2x35)=7\det\begin{pmatrix}2 & x \\ 3 & 5\end{pmatrix}=7det(23x5)=7, find xxx.
If A=(1234)A=\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}A=(1324), find det(3A)\det(3A)det(3A).
Find the determinant of G=(cosθ−sinθsinθcosθ)G=\begin{pmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{pmatrix}G=(cosθsinθ−sinθcosθ).
Let A=(2103)A=\begin{pmatrix}2 & 1\\0 & 3\end{pmatrix}A=(2013) and B=(4512)B=\begin{pmatrix}4 & 5\\1 & 2\end{pmatrix}B=(4152). Compute det(A)\det(A)det(A), det(B)\det(B)det(B) and det(AB)\det(AB)det(AB).
Compute the determinant of H=(t2t23t)H=\begin{pmatrix}t^2 & t\\2 & 3t\end{pmatrix}H=(t22t3t) as a function of ttt.
Previous
Question Type 3: Finding the products of matrices
Next
Question Type 5: Finding the inverse of 2x2 matrices