Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Write the equation 2x=82^x = 82x=8 in logarithmic form.
Express log3(x−4)=2\log_{3}(x-4)=2log3(x−4)=2 in its exponential form.
Convert the line y−3=2(x+1)y - 3 = 2(x + 1)y−3=2(x+1) into standard form Ax+By+C=0Ax + By + C = 0Ax+By+C=0.
Factorise the quadratic h(x)=x2−5x+6h(x) = x^2 - 5x + 6h(x)=x2−5x+6 and express it in factorised form.
Expand the quadratic g(x)=3(x+2)2−7g(x) = 3(x+2)^2 - 7g(x)=3(x+2)2−7 and write it in standard form.
Convert the repeating decimal 0.36‾0.\overline{36}0.36 to a fraction in simplest form.
Given the parametric equations x=1+2tx=1+2tx=1+2t, y=3t−1y=3t-1y=3t−1, eliminate the parameter and write yyy as a function of xxx.
Convert the quadratic function f(x)=2x2−8x+5f(x) = 2x^2 - 8x + 5f(x)=2x2−8x+5 from its standard form to vertex form.
Convert the polar equation r=4r=4r=4, θ=150∘\theta=150^\circθ=150∘ to rectangular coordinates (x,y)(x,y)(x,y).
Express the complex number 5(cos60∘+isin60∘)5\bigl(\cos60^\circ + i\sin60^\circ\bigr)5(cos60∘+isin60∘) in rectangular form a+bia+bia+bi.
Convert the point (3,−3)(3,-3)(3,−3) from rectangular coordinates to polar coordinates (r,θ)(r,\theta)(r,θ) with 0≤θ<2π0\le\theta<2\pi0≤θ<2π.
Convert the complex number −2+2i-2+2i−2+2i to polar form r(cosθ+isinθ)r\bigl(\cos\theta + i\sin\theta\bigr)r(cosθ+isinθ) with 0≤θ<2π0\le\theta<2\pi0≤θ<2π.
Previous
Question Type 2: Finding the equation of a straight line using a point and a gradient
Next
Question Type 4: Finding the gradient using two different points