Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Let AAA be a 2×32\times32×3 matrix and BBB be a 3×23\times23×2 matrix. Determine whether the sum A+BA+BA+B is defined. Explain.
Let AAA be a 2imes32 imes32imes3 matrix and BBB be a 3imes43 imes43imes4 matrix. Determine whether the product ABABAB is defined. If it is, state the dimensions of ABABAB.
Let AAA be a 2imes32 imes32imes3 matrix and BBB be a 2imes32 imes32imes3 matrix. Determine whether the product ABABAB is defined. If not, explain why.
Let A=(1224)A=\begin{pmatrix}1&2\\2&4\end{pmatrix}A=(1224). Determine whether A−1A^{-1}A−1 exists. Explain your reasoning.
Let A=(102) (1×3),B=(123) (3×1).A=\begin{pmatrix}1&0&2\end{pmatrix}\ (1\times3), \quad B=\begin{pmatrix}1\\2\\3\end{pmatrix}\ (3\times1).A=(102) (1×3),B=123 (3×1). Compute ABABAB, and determine whether BABABA is defined.
Let A,B,CA,B,CA,B,C be all 2imes22 imes22imes2 matrices. Determine whether the equality A(B+C)=AB+ACA(B+C)=AB+ACA(B+C)=AB+AC holds for all such matrices. Justify your answer.
Let AAA be m×nm\times nm×n, BBB be n×pn\times pn×p, and CCC be p×qp\times qp×q. Show that matrix multiplication is associative by comparing (AB)C(AB)C(AB)C and A(BC)A(BC)A(BC).
Let AAA and BBB be two 2imes22 imes22imes2 matrices. Determine whether in general AB=BAAB=BAAB=BA. Provide a justification.
Let AAA be a 2imes32 imes32imes3 matrix, BBB a 3imes43 imes43imes4 matrix, and CCC a 4imes24 imes24imes2 matrix. Determine whether (AB)C(AB)C(AB)C and A(BC)A(BC)A(BC) are defined, and state their dimensions.
Given A=egin{pmatrix}1&2\\3&4\end{pmatrix}, \quad B=\begin{pmatrix}5&6\\7&8\end{pmatrix}, compute ABABAB and BABABA, then determine whether AB=BAAB=BAAB=BA.
Let AAA be an invertible 2×22\times22×2 matrix. Show that (AT)−1=(A−1)T(A^T)^{-1}=(A^{-1})^T(AT)−1=(A−1)T.
Let AAA and BBB be invertible n×nn\times nn×n matrices. Determine the formula for (AB)−1(AB)^{-1}(AB)−1 in terms of A−1A^{-1}A−1 and B−1B^{-1}B−1.
Previous
Question Type 1: Performing simple linear operations on matrices
Next
Question Type 3: Finding the products of matrices