Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Evaluate (log101000−log1010)+log105(\log_{10}1000 - \log_{10}10) + \log_{10}5(log101000−log1010)+log105.
Find the value of 3log525−log51253\log_5 25 - \log_5 1253log525−log5125.
Simplify and evaluate log28+log214−log22\log_2 8 + \log_2 \tfrac{1}{4} - \log_2 2log28+log241−log22.
Evaluate ( log381+2log33)−log39(\,\log_3 81 + 2\log_3 3) - \log_3 9(log381+2log33)−log39.
Find the value of (log23+log26)−log29(\log_2 3 + \log_2 6) - \log_2 9(log23+log26)−log29.
Simplify 2log749−log77+log7142\log_7 49 - \log_7 7 + \log_7 142log749−log77+log714.
Simplify log432+log48−3log42\log_4 32 + \log_4 8 - 3\log_4 2log432+log48−3log42.
Compute (log216−log82)+log44(\log_2 16 - \log_8 2) + \log_4 4(log216−log82)+log44.
Simplify and evaluate (log327−log93)+log33(\log_3 27 - \log_9 3) + \log_3 \sqrt{3}(log327−log93)+log33.
Evaluate 2log39+log93−log3132\log_3 9 + \log_9 3 - \log_3 \tfrac{1}{3}2log39+log93−log331.
Compute (log864+2log42)−log216(\log_8 64 + 2\log_4 2) - \log_2 16(log864+2log42)−log216.
Simplify log5125−2log255+log5125\log_5 125 - 2\log_{25} 5 + \log_5 \tfrac{1}{25}log5125−2log255+log5251.
Previous
No previous topic
Next
Question Type 2: Using logarithm laws to simplify algebraic expressions into a single term