Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Show that 1−sin2x=cos2x1 - \sin^2 x = \cos^2 x1−sin2x=cos2x and use this to rewrite 8−8sin2x8 - 8\sin^2 x8−8sin2x in simplest form.
Express 5cos2x5\cos^2 x5cos2x in terms of sinx\sin xsinx.
Rewrite 3sin2x+7cos2x3\sin^2 x + 7\cos^2 x3sin2x+7cos2x solely in terms of sin2x\sin^2 xsin2x.
Simplify cos2x−sin2x+2sinxcosx\cos^2 x - \sin^2 x + 2\sin x\cos xcos2x−sin2x+2sinxcosx in terms of sin(2x)\sin(2x)sin(2x) or cos(2x)\cos(2x)cos(2x).
Simplify cos4x−sin4x\cos^4 x - \sin^4 xcos4x−sin4x and express your answer in terms of cos(2x)\cos(2x)cos(2x).
Rewrite 3sinx+4cosx3\sin x + 4\cos x3sinx+4cosx in the form Rsin(x+α)R\sin\bigl(x+\alpha\bigr)Rsin(x+α), where R>0R>0R>0 and 0<α<π20<\alpha<\tfrac{\pi}{2}0<α<2π.
Express sin2x−sin4x\sin^2 x - \sin^4 xsin2x−sin4x in terms of cos(2x)\cos(2x)cos(2x) and cos(4x)\cos(4x)cos(4x).
Simplify sin2xcos2x\sin^2 x \cos^2 xsin2xcos2x in terms of cos(4x)\cos(4x)cos(4x).
Express sin4x\sin^4 xsin4x in the form A+Bcos(2x)+Ccos(4x)A + B\cos(2x) + C\cos(4x)A+Bcos(2x)+Ccos(4x), and state A,B,CA,B,CA,B,C.
Simplify cos4x+sin4x\cos^4 x + \sin^4 xcos4x+sin4x in the form F+Gcos(4x)F + G\cos(4x)F+Gcos(4x).
Express 5sin2x−3cos2x5\sin^2 x - 3\cos^2 x5sin2x−3cos2x in the form D+Ecos(2x)D + E\cos(2x)D+Ecos(2x).
Evaluate ∫0π25cos2x dx\displaystyle \int_{0}^{\frac{\pi}{2}}5\cos^2 x\,dx∫02π5cos2xdx by rewriting the integrand.
Previous
No previous topic
Next
Question Type 2: Simple proofs with the golden rule